IMPROVING OAK WILT DIAGNOSTICS IN MINNESOTA

Anna Yang
Department of Plant Pathology
University of Minnesota

OAK WILT

- Significant disease of oak species
- Caused by Ceratocystis fagacearum

U.S. Distribution in 2010

Source: Q. Chavez and J. Pokorny. Northeastern Area State and Private Forestry, U.S. Forest Service.

MN Distribution

Source: J. Juzwik and D. French, 2002.

SYMPTOMS

Red Oak Bur Oak White Oak

Other insects and disease may mimic symptoms

COPY CATS

Bur Oak Blight
Source: T. Harrington, Iowa State University

Anthracnose
Source: J. O'Brien, U.S. Forest Service

Twolined Chestnut Borer Source: S. Katovich, U.S. Forest Service

And many more!

DISEASE MANAGEMENT

- Effective management options available
- Dependent on accurate and timely diagnosis

Vibratory Plow Lines
Source: B. Cook, Michigan State University

Approach

- Visual assessment
- Sampling for diagnostic clinic

Lab Diagnosis

- · Isolation from wood chips
- Long incubation
- Dependent on sample quality
- Occurrence of false negatives

Management / Treatment

Approach

- Visual assessment
- Sampling for diagnostic clinic

Sampling Steps:

- 1. Select partially wilted branch
- 2. Look for discoloration in sapwood
- 3. Sample from up to three branches
- 4. If branches are too high, sample main stem
- 5. Keep samples cool during transport

Lab Diagnosis

- · Isolation from wood chips
- Long incubation
- Dependent on sample quality
- Occurrence of false negatives

Poor Sample Quality:

- Dead branches
- Dry samples
- Other fungi present

Total Time: 6-14 days

Approach

- · Visual assessment
- Sampling for diagnostic clinic

Lab Diagnosis

- · Isolation from wood chips
- Long incubation
- · Dependent on sample quality
- Occurrence of false negatives

Effective treatment depends on early and accurate diagnosis

NEW METHODS

Rapid and accurate detection of *Ceratocystis fagacearum* from stained wood and soil by nested and real-time PCR

By C. P. Wu^{1,2}, G. Y. Chen¹, B. Li², H. Su², Y. L. An², S. Z. Zhen² and J. R. Ye^{1,3}

¹Jiangsu Province Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forest University, Nanjing 210037, China; ²Plant Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing, China; ³E-mail: jrye@njfu.com.cn (for correspondence)

The detection of *Ceratocystis fagacearum* in Texas live oak using real-time polymerase chain reaction

T. KURDYLA (1), D. Appel (1)

(1) Texas A&M University, College Station, TX, U.S.A.

Phytopathology 101:S95

Developed, but not fully useful yet.

OBTAINING DNA

DNA is extracted directly from wood

Tree by Humberto Pornaro from The Noun Project
DNA by Gilad Fried from The Noun Project
Test Tube by Olivier Guin from The Noun Project
Icon by Ben Didier from The Noun Project

WHAT IS PCR?

Polymerase
Chain
Reaction

Making millions of copies of a portion of DNA (think CSI).

Nested PCR

Real-Time PCR

RESEARCH OBJECTIVES

Test and modify nested and realtime PCR protocols for detection of *C. fagacearum* in sapwood

Develop and test field sampling and laboratory processing guidelines

Evaluate reliability and practicality for routine use by diagnostic laboratories

- 1. SAMPLING METHODS
- 2. SAMPLE PROCESSING
- 3. NESTED PCR + RESULTS
- 4. REAL-TIME PCR + RESULTS
- 5. CURRENT STATUS

SAMPLING METHODS - YEAR 1

Actively Wilting Crowns

Three branches selected from each tree:

- Nine red oak
- Eight bur oak
- Eight white oak

Three healthy control trees of each species

Seven communities sampled

SAMPLING METHODS – YEAR 2

≥1 Year Dead Branches

Three branches selected from each tree:

- Three bur oak
- Four white oak

Two non-oak wilt affected control trees for each species

Seven communities sampled

SAMPLING METHODS – YEAR 2

≥1 Year Dead Red Oak

Three "windows" removed from each red oak tree:

- Six streaking
- Seven mat scar

Two non-oak wilt killed control trees

Two communities sampled

LABORATORY PROCESSING

Isolation

Molecular Detection

Isolation

Molecular Detection

Plating Wood Chips

Sapwood Drilling

14 day incubation

DNA Extraction

Nested PCR

Real-Time PCR

NESTED PCR

NESTED PCR

Positive

Negative

Extraction: 2 hours

Nested PCR: 6 hours

Total time: 1-2 days

NESTED PCR RESULTS

ACTIVE WILT

- Red Oak little difference in detection between methods
- Bur and White Oak nested PCR superior

≥1 YEAR DEAD BRANCHES

Bur and White Oak - only detected through nested PCR

RED OAK - MAIN STEM SAMPLES

- Streaked Cambium slightly higher detection through nested PCR
- Mat Scars only detection through nested PCR

REAL-TIME PCR

REAL-TIME PCR

Site ID	Sample ID	FAM Ct	Protocol
A1	NTC	0.00	OW test
A2	NTC	0.00	OW test
A3	CF-0	22.03	OW test
A4	CF-2	28.69	OW test
A5	501	23.33	OW test
A6	501	23.77	OW test
A7	502	25.08	OW test
A8	502	25.68	OW test
A9	503	21.99	OW test
A10	503	22.75	OW test
A11	504	23.30	OW test
A12	504	23.18	OW test
A13	505	0.00	OW test

Negative

Extraction: 2 hours

Real-Time PCR: 2 hours

Total time: approx. 1 day

REAL-TIME PCR RESULTS

ACTIVE WILT

- Red Oak isolation resulted in more frequent detection
- Bur and White Oak hard to tell

≥1 YEAR DEAD BRANCHES

- Bur Oak Not detected with either
- White Oak only detected through real-time PCR

RED OAK - MAIN STEM SAMPLES

Mat Scars

- Streaked Cambium little difference between methods
- Mat Scars better detection through real-time PCR

NEXT STEPS

Compiling data to compare all three methods to answer questions

Assess usability of new protocols

BETA-TESTING NEW PROTOCOLS

University of Minnesota

Nested PCR

University of Wisconsin

Real-Time PCR

- Cost Efficiency
- Reliability
- Practicality for routine use
- Differences
 between sample
 types/qualities

TECHNOLOGY TRANSFER

- Work with UMN and UW-Madison to publish in NPDN newsletter
- Other interested diagnostic clinics

ACKNOWLEDGEMENTS

Technical Assistance

- Paul Castillo
- Jameson Scholer
- Kira Ashley

Funding

- Forest Service STDP
- MN Turf and Grounds Foundation
- DOVE Fellowship
- CFANS Fellowship

Graduate Committee

- Dr. Jennifer Juzwik
- Dr. Deborah Samac
- Dr. Gary Johnson
- Dr. Dimitre Mollov

ACKNOWLEDGEMENTS

Assistance with Study Sites and Trees

- City of Eagan
- University of Minnesota
- Three Rivers Park District
- City of Oakdale
- Boston Scientific
- City of Minnetonka
- Whispering Pines Realty
- G. Feasky, Private Land Owner
- City of Apple Valley

THANK YOU!

